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Abstract— The driving styles of human drivers exhibit a
diverse range of observed driving patterns and manoeuvres,
influenced by their habitual choice of driving behaviours.
Understanding these driving styles is essential for enhancing
road safety and reducing emissions. In this paper, we pro-
pose a deep temporal clustering approach to classify driving
styles, providing enhanced explainability. A comprehensive
car-following dataset was collected, incorporating extensive
feature parameters. Subsequently, we developed a deep tem-
poral clustering-based classification method that considers the
variations in driving style within a single trip. The performance
evaluation employed K-Shape clustering, and the significance
of various features was assessed using SHAP values, enhancing
the interpretability of the model. Our findings contribute to the
advancement of driving style classification methods, promoting
a deeper understanding of driving behaviours for improved
road safety measures.

I. INTRODUCTION

The rapid advancement of autonomous driving technolo-
gies is bringing us closer to the commercialization of au-
tonomous vehicles (AVs). While ensuring the safety opera-
tion of AVs remains the primary focus of current research, it
is also crucial to consider personalized AV control in future
studies [1]. Ignoring the inter-personal differences in driving
preferences can negatively impact passenger comfort and
hinder public acceptance of these vehicles [1].

Elander et al. [2] proposed the first formal definition of
driving style as ”the way individuals choose to drive or
driving habits that have become established over a period
of years.” Despite extensive research on this topic, a unified
definition of driving style has yet to be established within
the academic and professional traffic safety communities [3].
Generally, driving style refers to a driver’s habitual choice
of driving maneuvers, reflecting differences in cognition and
action characteristics.

While some studies quantify driving style variations in
terms of aggressiveness or violation levels, most classify
it into distinct groups, namely aggressive, moderate, and
conservative [4]. Aggressive driving style involves risky
speeding, abrupt speed changes, harsh acceleration and de-
celeration, and improper lateral position maintenance. Con-
servative driving, on the other hand, encompasses opposite
behaviors, while moderate driving serves as a reference
for isolating other driving styles [4]. Numerous modern
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approaches have successfully classified these driving styles
[5]–[10]. However, these approaches often assume that each
participant’s driving style remains consistent throughout a
trip and overlook potential variations within a single trip.
While this assumption may be suitable for overall evalua-
tions, an alternative approach is to divide the entire trip into
a set of maneuver segments, such as accelerating, braking
and maintaining. Drivers exhibit aggressive driving style in
accelerating manoeuvres does not necessarily imply they are
aggressive in other manoeuvres [3]. Therefore, this paper
proposes a manoeuvre-based driving style classification ap-
proach that aims to capture variations in each individual’s
driving patterns.

In recent years, deep learning-based methods have gained
popularity in driving style classification studies due to
their superior pattern recognition capabilities [11]. Although
these methods achieve higher accuracy than conventional
approaches, their ”black box” nature hinders explainability
and makes it difficult to understand their underlying mecha-
nisms [12]. To enhance the explainability and interpretability
of classification results, Explainable Artificial Intelligence
(XAI) techniques have been proposed. In this study, we
propose fitting cluster labels with a supervised model and
employing SHapley Additive exPlanations (SHAP) values to
measure the importance of features in the obtained results
[13]. This approach can improve our understanding of the
classification results and recommend the best combination
of feature parameters to represent these driving styles.

The primary contributions of this study are outlined as
follows:

1) A deep clustering method considering temporal fea-
tures is developed for driving style analysis.

2) The proposed approach emphasizes the driving style
diversities observed in various driving maneuvers.

3) A comprehensive set of feature parameters is selected
in this study. Their influence on classification results
is analysed to improve explainability of the model.

This paper has been structured into five sections. Section
II briefly reviews some relevant literature, both their classifi-
cation method and feature parameters are evaluated. Section
III explains the adopted methodology, consisting of a brief
summary of the method and detailed explanation of each
components. The obtained results and discussion of analysis
are presented in section IV. Finally, section V discusses
the findings and limitations of this study and suggests the
potential for future works.



II. LITERATURE REVIEW

A. Classification method
The literature on driving style classification is extensive,

as evidenced by various studies [5]–[10]. Table. I provides
an overview of the methods used to differentiate driving
styles, including both supervised [9], [11], [14], [15] and
unsupervised methods [3], [8], [10], [16], [17]. Supervised
classification methods require labeled training data to train
the classifier, often achieved through experts’ knowledge.

On the other hand, unsupervised methods can be applied
directly to unlabeled data. While the results are more ob-
jective, interpreting the outcomes can be challenging. High-
dimensional driving data can pose difficulties in achieving
optimal clustering performance. Existing studies demonstrate
the effectiveness of clustering algorithms by comparing the
results with expert knowledge [7] or by evaluating the
data characteristics within each cluster and linking them to
corresponding driving style groups [3], [16], [17].

Although supervised classification methods offer better
interpretability, subjective labels based on experts’ knowl-
edge can introduce errors in data labeling, potentially fail-
ing to accurately represent the underlying driving style.
Additionally, manually labeling driving data can be time-
consuming and require substantial effort when dealing with
a large number of participants. Consequently, unsupervised
clustering methods present a more promising solution for
driving style classification. Furthermore, as driving data is
typically represented as time series, capturing and integrating
the temporal correlations of the data is beneficial for accu-
rate classification [11]. However, most existing studies treat
driving data as independent samples and overlook temporal
features. Thus, improvements are needed in existing cluster-
ing methods to better incorporate the temporal correlations of
high-dimensional driving data. Furthermore, enhancing the
explainability of the obtained clusters is crucial for driving
style classification.

B. Feature parameters for classification
The feature parameters utilized in previous studies are also

summarized in Table. I. These parameters can be broadly
categorized into three groups: vehicle-related, cognition-
related, and operation-related. Vehicle-related parameters en-
compass vehicle kinematics, such as acceleration and vehicle
speed, which are commonly employed in existing studies.
Additionally, cognition-related parameters such as headway
gap and time gap, which have distinct interpretations among
different driving style groups, are incorporated to capture the
driver’s cognition characteristics [3], [6], [7], [16]. Lastly,
operation-related parameters, including engine RPM, pedal
opening, and steering wheel rotation, serve as indicators of
drivers’ operational characteristics [3], [10], [11], [14], [15].

Different combinations of these feature parameters have
been used in existing studies. However, there is a lack of
evaluation regarding the significance of these parameters and
their contributions to the driving style classification results.

Building upon the aforementioned limitations in previous
studies’ approaches, this study proposes a deep temporal

clustering methods for driving style classification that ad-
dresses the variations within a trip. The influence of a more
comprehensive set of feature parameters is also evaluated to
better interpret the classification results.

III. METHODS

A. Model Summary

This study focuses on the classification of driving
style variations using a temporal sequence of driving
data, denoted as xi = (acceleration, vehicle, gap, rpm,
throttle, brake, steering)i, where i ∈ 1, 2, . . . , n. The ob-
jective is to classify the sequence into three clusters, each
represented by a centroid µj , where j ∈ 1, 2, 3.

The proposed methodology consists of three phases. In the
first phase, individual trips are segmented into three distinct
categories of driving manoeuvres: acceleration, braking, and
maintaining. Manoeuvres belonging to the same category
are then grouped together to create coherent assemblies.
Subsequently, in the second phase, a temporal Autoencoder
is trained to learn an effective latent representation for each
assembly of manoeuvres. This representation has a signifi-
cantly smaller dimension than the original data, which aids
in the classification process. Finally, an iterative clustering
technique is employed to minimize the Kullback-Leibler
(KL) divergence between the probability distribution based
on the centroid positions and the auxiliary target distribution.
The pseudocode of the proposed method is outlined in
Algorithm.1.

Algorithm 1 Pseudocode of the proposed method
Input: dataset D = {xi}, number of desired clusters K
Output: set of clusters C

1: Split dataset into small time sequences N ← D

2: Create assemblies of three driving manoeuvres E ← N
3: for e ∈ E do
4: Pre-train temporal autoencoder
5: for xi ∈ e do
6: Convert xi to latent representation zi
7: Initialise cluster centroids µj , j ∈ K
8: while not converged do
9: Soft assignment Cj ← zi, see Eq. 4

10: Compute KL divergence, see Eq. 6
11: Update cluster centroids µj , j ∈ K
12: end while
13: end for
14: end for

B. Driving Manoeuvre Detection

In this study, three categories of driving manoeuvres,
namely acceleration, braking, and maintaining, are con-
sidered. These manoeuvres are primarily characterized by
different tendencies in vehicle speed changes, such as as-
cending, descending, or remaining approximately constant.
Therefore, vehicle speed is utilized as the key feature param-
eter to differentiate between the various driving manoeuvres.



TABLE I
SUMMARY OF DRIVING STYLE CLASSIFICATION STUDIES

Author Year Method Feature Parameters
Acc. Speed Gap Time Gap RPM Pedal Steering

Albers and Albrecht [10] 2005 Self-organizing map ✓ ✓ ✓ ✓
Constantinescu et al. [8] 2010 K-means, hierarchical clustering ✓ ✓
Aljaafreh et al. [5] 2012 Fuzzy logic ✓ ✓
Al-Din et al. [6] 2013 Fuzzy logic ✓ ✓ ✓
Dörr et al. [7] 2014 Fuzzy logic ✓ ✓ ✓
Vaitks et al. [9] 2014 K-nearest neighbors ✓
Wang et al. [14] 2017 semisupervised SVM ✓ ✓
Feng et al. [3] 2018 Support Vector Clustering ✓ ✓ ✓ ✓
Li et al. [11] 2019 CNN, LSTM ✓ ✓ ✓ ✓
Guo et al. [15] 2021 Voting Decision tree+SVM+KNN ✓ ✓ ✓
Zheng et al. [16] 2022 K-means in frequency domain ✓ ✓ ✓ ✓
Li et al. [17] 2022 Similarity-based clustering with DTW ✓ ✓

To facilitate manoeuvre detection, each trip is divided into
a series of 1-second sequences, which are subsequently
combined.

In order to capture the diverse patterns present in the tem-
poral sequence data, dynamic time warping (DTW) is em-
ployed as the similarity metric for clustering. When compar-
ing two driving sequences, denoted as X = x1, x2, . . . , xn

and Y = y1, y2, . . . , yn, DTW identifies the path that
minimizes the Euclidean distance between the sequences as,

W ∗ = argmin


√√√√ K∑

k=1

(xi − yj)
2

 (1)

where W ∗ is the optimal warping path and K ∈ [n, 2n− 1]
is the number of elements in the optimal path.

The cumulative cost matrix γ(i, j) can be computed as,

γ(i, j) = d(xi, yj)+

min(γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1))
(2)

where d(xi, yj) is the distance measurement.
Using DTW as the similarity metric, K-means clustering

is subsequently employed to isolate distinct driving ma-
noeuvres. Within each trip, driving manoeuvres belonging
to the same cluster are combined. To assign labels to these
manoeuvres, the average speed change within each group
is utilized. Specifically, the manoeuvre with the highest
speed increase is labeled as an accelerating manoeuvre, the
manoeuvre with the greatest speed decrease is labeled as a
braking manoeuvre, and the remaining manoeuvre is labeled
as a maintaining manoeuvre.

C. Latent Representation

Following the detection of driving manoeuvres, segments
representing the same type of manoeuvre are extracted and
combined to form distinct driving manoeuvre groups. Each
group comprises a large set of 5×7 data sequences, where 5
denotes the temporal length (1s) and 7 represents the dimen-
sion of input features. To learn the latent representation of
each group, a temporal autoencoder is employed. It consists
of an encoder and a decoder. Both the encoder and decoder
comprise three fully connected layers and two bidirectional

LSTM (BiLSTM) layers. The multi-layer perceptron (MLP)
with three fully connected layers is utilized to reduce the
dimensionality of the feature parameters, while the two
BiLSTM layers capture temporal changes in both forward
and backward directions. By leveraging this architecture, the
latent representation incorporates temporal information from
all feature parameters at a reduced dimension, facilitating
subsequent clustering tasks.

To ensure the accuracy of the latent features in repre-
senting the original data, separate autoencoders are trained
for each driving manoeuvre group. The mean squared error
(MSE) is employed as the loss function to evaluate the
dissimilarity between the original (xi) and reconstructed fea-
tures (x̂i), as depicted in Equation 3. Once the predetermined
MSE criterion (0.01) is met, the decoder is discarded, and
only the encoder is used to map input features into the latent
representation for temporal clustering.

MSE =
1

N

N∑
i=1

(xi − x̂i)
2 (3)

D. Temporal Clustering

After obtaining the mapping from input feature parameters
to latent representation, the cluster centroids are initialized by
performing K-means clustering on the latent representation,
with the default number of clusters set to three. The cluster-
ing process is then trained using an unsupervised algorithm
that iterates between two steps.

In the first step, a soft assignment of input xi is computed
by ranking the distances between the centroid µj and its
corresponding latent representation zi. The second step in-
volves refining the cluster centroids using a loss function that
maximizes the assignment confidence by employing an aux-
iliary target distribution. The aim is to enhance the clustering
performance by encouraging high-confidence assignments.

This iterative process continues until a convergence cri-
terion is met, indicating that the clustering algorithm has
reached a stable state. Consistent with previous studies [18],
[19], the similarity between the latent representation zi and
centroid µj is measured using the student’s t-distribution ker-
nel. In an unsupervised setting, the probability of assigning
sample i to cluster j can be denoted as,



qij =

∑
j′

(
1 + ∥(zi − µj′∥

2
)

1 + ∥(zi − µj∥2
(4)

To optimize the cluster centroids, the model is trained by
minimizing the KL divergence loss between qij and the target
distribution pij . Following the approach suggested by Xie et
al. [18], the target distribution can be computed as,

pij =
q2ij/fj∑
j′ q

2
ij′

/fj′
(5)

where fj =
∑

i qij are soft cluster frequencies.
The KL divergence loss can be defined as,

L = KL(P ||Q) =

n∑
i=1

3∑
j=1

pij log
pij
qij

(6)

where n is the number of samples in dataset and 3 is the
number of clusters.

The cluster centroids {µj}3j=1 is optimised using Stochas-
tic Gradient Descent (SGD). The gradient to update cluster
centroid µj can be denoted as,

∂L

∂µj
=− 2

∑
i

(
1 + ∥zi − µj∥2

)−1

× (pij − qij)(zi − µj)

(7)

E. Model Explainability

Model explainability pertains to the process of elucidating
the outputs generated by machine learning models by exam-
ining how and which features impact the model’s final output.
Enhancing explainability in driving style classification can
provide insights into the significance of different feature
parameters and aid in identifying a more effective subset of
features. Among the existing methods, the SHAP (SHapley
Additive exPlanations) framework is a widely used local
diagnostic method that quantifies the marginal contribution
and importance of each feature [13]. The SHAP value,
denoted as ϕj , for a specific feature j can be defined as,

ϕj =
1

|N |!
∑

S⊆N\{j}

|S|!(|N | − |S| − 1)!

[f(S ∪ {j})− f(S)]

(8)

where | • | is the number of elements in the set, N is the
original feature set, S represents any feature subset in N ,
N\{j} denotes a subset of all elements in the sequence
before feature j. f(S) is the output of the model of feature
subset S, and f(S ∪ {j}) − f(S) is the cumulative contri-
bution value of feature j.

However, it is important to note that the SHAP framework
can only be directly applied to supervised models. Hence, in
this study, a LSTM classifier [11] is employed to train and
fit the clustering labels. Subsequently, the trained classifier
is utilized to compute the SHAP values, enabling the as-
sessment of feature importance and contributions within the
clustering process.

IV. RESULTS AND DISCUSSION

The proposed model was implemented using PyTorch.
The training and evaluation processes were conducted on
a Desktop PC with the following specifications: CPU -
AMD Ryzen 9 5900X 12-Core @ 3.70GHz, GPU - NVIDIA
GeForce RTX 3070, and RAM - 32 GB.

For training the autoencoder, an ADAM optimiser was
employed. In contrast, the clustering model was trained using
the SGD optimiser. A learning rate of 0.01 and a batch size
of 128 are used for both optimisations. These configurations
were selected to optimize the training process and enhance
the model’s performance.

A. Data Collection

A total of 25 experienced drivers (13 males and 12
females) participated in the data collection. The participants
had an average age of 25.1±3.4 years.

To capture driving behavior, three distinct car-following
scenarios, each lasting 8 minutes, were created using a
bespoke driving simulation software. The software was de-
veloped using the Unity3D game engine (version 2019.4.f1)
and deployed on an XPI DS1 driving simulator, which pro-
vided the necessary hardware devices (surrounding screens,
steering wheel with force feedback, pedals, gear shifter, etc.)
for an immersive driving experience.

During the simulation, each participant was instructed
to activate a simulated vehicle from a predefined starting
position and drive in the simulated environment based on
their usual driving habits. The driving simulator’s sensors
recorded various relevant information, including time, po-
sition, direction, speed, headway distance from the leading
vehicle, engine rpm, throttle and brake position, steering
wheel rotation, and speed of the leading vehicle. The col-
lected driving data was sampled at a fixed frequency of 5 Hz
and exported for subsequent post-processing and analysis. To
ensure consistency, all feature parameters were normalized
to the range of [0, 1] per category for further analysis and
usage in the proposed method.

B. Driving Manoeuvre Detection

The proposed driving manoeuvre detection approach re-
lies on the distinct changing tendencies in vehicle speed.
An example of the segmented results for a sample trip is
depicted in Figure 3. The maximum and average vehicle
speeds observed in this trip are 132 km/h and 64.5 km/h,
respectively. Furthermore, the maximum acceleration and
deceleration values recorded are 1.42 m/s2 and -1.87 m/s2.

The segmented trip comprises 244 seconds of accelerating
manoeuvres, 169 seconds of braking manoeuvres, and 64
seconds of maintaining manoeuvres. After merging adjacent
driving manoeuvres of the same type, the total accumulated
numbers for each manoeuvre category are as follows: 52
for accelerating, 31 for braking, and 39 for maintaining.
These numbers represent the combined occurrences of the
respective driving manoeuvres observed in the sample trip.



Fig. 1. Manoeuvre detection of a sample trip

From Fig. 1, it can be observed that all three driving ma-
noeuvres are evenly distributed throughout the trip, with min-
imal abrupt changes between manoeuvres. However, a few
abrupt changes are noticed, which are primarily attributed to
maintaining a safe headway distance with the leading vehicle
or adjusting to the curvature of the road. These observations
were made during the experiment and highlight the real-
world scenarios encountered during driving.

C. Driving Style Classification

As the proposed method evaluates driving style in small
time sequences, it is difficult to acquire ground truth labels
for evaluation. Therefore, the statistics of the clustering
results (Table. IV-C) are used for performance evaluation.
To label each cluster, the distinctive behaviors associated
with specific driving styles, such as risky speeding and
abrupt speed changes for aggressive driving, were consid-
ered. Furthermore, the ordering of clusters was rearranged
to enhance visual interpretation. As a result, clusters 1, 2,
and 3 align more closely with aggressive, moderate, and
conservative driving, respectively. A minor improvement in
Silhouette Coefficient is obtained with the proposed method
(0.642 compared to 0.608 for K-Shape). Meanwhile, the
proposed method also exhibited more representative behav-
iors compared to K-Shape. For instance, in the accelerating
maneuver, cluster 1 (representing aggressive driving) of the
proposed method exhibited the highest values across all
features except brake, whereas the K-Shape cluster only
demonstrated the highest values in velocity and throttle.
Similar trends were observed in other maneuvers as well.
Statistics of the proposed method are more aligned with
the representative behaviours of each driving style. These
findings indicate that the driving style clusters obtained by
the proposed method outperform those obtained by K-Shape,
as they capture more nuanced and representative driving
behaviors.

To illustrate the driving style variation, the classification
result of a selected participant is shown in Fig. 2. The results
are the average of three trips, with the error bars denoting

Fig. 2. Classification result of a sample driver

the standard deviation. It is evident that the driving style
significantly varies across different manoeuvres. Specifically,
this participant demonstrates a moderate driving style in both
accelerating and maintaining manoeuvres, while adopting a
more conservative approach during braking events. Further-
more, as shown with the standard deviation, the consistency
of the driving style is apparent within each manoeuvre across
the different trips, indicating that this participant maintains
a consistent driving style. These findings emphasize the im-
portance of distinguishing driving style classification based
on specific manoeuvres, as drivers can consistently exhibit
different driving styles across distinct manoeuvres.

D. Result Interpretation

To improve the comprehension of the findings, an as-
sessment was conducted to determine the contribution of
feature parameters to the clustering outcomes. Specifically,
focusing on the clustering results pertaining to accelerating
manoeuvres, the SHAP values were visualized in Fig. 3.
This visualisation combines the feature importance with their
corresponding effects on the clustering results. The features
are ranked based on their significance in influencing the out-
comes. Notably, the analysis reveals that throttle and engine
RPM emerge as the most influential features in this manoeu-
vre, whereas brake exhibits minimal impact. Moreover, most
of the features (throttle, RPM, velocity, and acceleration)
positively contribute to the clustering results, aligning with
established knowledge and affirming the validity of the
clustering outcomes. Additionally, the sequential order of
feature parameters can guide future studies in identifying
a more representative subset of features for driving style
classification.

V. CONCLUSION

A novel approach for classifying driving styles with
temporal features was proposed. Our model emphasises
variations in individual’s driving style in a single trip. The
experimental data were collected using three bespoke car-
following scenarios with 25 participants.



TABLE II
PERFORMANCE EVALUATION

Manoeuvre Features Proposed Method K-Shape
Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Accelerating

Velocity (m/s) 20.3±9.4 19.4±10.6 19.2±10.7 20.7±9.8 15.2±8.9 11.4±8.8
Acceleration (m/s2) 1.0±0.8 0.8±0.7 0.7±0.6 0.8±0.7 1.3±1.2 1.1±1.1

RPM (r/min) 3596±1675 3588±1757 3435±1618 3665±1709 3445±1722 3789±1479
Throttle (%) 72.4±25.2 66.8±21.1 65.6±19.2 70.5±22.8 69.0±21.8 57.5±23.0
Brake (%) 0.1±2.3 0.1±1.7 0.2±1.5 0.1±2.0 0.1±1.3 0.3±2.2

Braking

Velocity (m/s) 20.8±10.2 18.8±10.4 18.2±10.1 20.0±9.5 17.6±9.9 19.4±10.3
Acceleration (m/s2) -2.1±3.4 -2.1±2.5 -1.2±1.4 -4.9±3.9 -3.4±3.2 -1.4±2.3

RPM (r/min) 3972±2338 3228±1688 3048±1615 3650±1704 3205±1911 3453±2011
Throttle (%) 31.1±32.1 10.9±14.2 10.2±14.7 8.8±17.3 15.5±21.7 19.4±25.6
Brake (%) 16.4±28.8 12.7±19.5 3.4±9.6 36.3±34.1 26.9±28.7 7.6±17.9

Maintaining

Velocity (m/s) 26.5±7.8 25.9±6.6 10.7±10.1 22.0±8.8 19.1±11.3 14.2±12.0
Acceleration (m/s2) -0.1±0.6 -0.2±0.9 -0.4±1.5 -0.3±0.9 -0.9±2.3 -0.2±0.9

RPM (r/min) 8268±729 6162±1077 1970±1477 5815±2741 5084±2941 3360±3005
Throttle (%) 72.9±21.3 43.7±12.2 22.1±20.4 49.5±28.9 43.8±30.6 33.6±29.5
Brake (%) 0.9±3.6 1.5±6.2 5.2±14.8 2.9±12.2 8.8±20.7 2.7±9.3

cyan, orange and green colors denote largest, medium and smallest values, respectively.

Fig. 3. SHAP summary

This paper’s primary contribution is the introduction of
a deep temporal clustering method for driving style clas-
sification. Instead of considering each individual’s driving
style as a static category, the proposed approach high-
lights the diversities observed in various driving maneuvers.
Furthermore, an XAI method is incorporated to evaluate
the the influence of feature parameters on the results and
improve explainability of the proposed method. As part of
future research, ablation studies will be conducted to explore
the impact of various similarity metrics on enhancing the
performance of the model.
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